Semisymmetric graphs from polytopes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semisymmetric graphs from polytopes

Every finite, self-dual, regular (or chiral) 4-polytope of type {3, q, 3} has a trivalent 3-transitive (or 2-transitive) medial layer graph. Here, by dropping self-duality, we obtain a construction for semisymmetric trivalent graphs (which are edgebut not vertex-transitive). In particular, the Gray graph arises as the medial layer graph of a certain universal locally toroidal regular 4-polytope.

متن کامل

Semisymmetric Cubic Graphs Constructed from Bi-Cayley Graphs of An

For a group T and a subset S of T , the bi-Cayley graph BCay(T, S) of T with respect to S is the bipartite graph with vertex set T×{0, 1} and edge set {{(g, 0), (sg, 1)} | g ∈ T, s ∈ S}. In this paper, we investigate cubic bi-Cayley graphs of finite nonabelian simple groups. We give several sufficient or necessary conditions for a bi-Cayley graph to be semisymmetric, and construct several infin...

متن کامل

Cubic Semisymmetric Graphs of Order 2p 3 Semisymmetric Graphs of Order 2p 3

A regular graph is called semisymmetric if it is edge-transitive but not vertex-transitive. It is proved that the Gray graph is the only cubic semisymmetric graph of order 2p3, where p 3 is a prime.

متن کامل

A worthy family of semisymmetric graphs

In this paper, we construct semisymmetric graphs in which no two vertices have exactly the same neighbors. We show how to do this by /rst considering bi-transitive graphs, and then we show how to choose two such graphs so that their product is regular. We display a family of bi-transitive graphs DN (a; b) which can be used for this purpose and we show that their products are semisymmetric by ap...

متن کامل

Semisymmetric cubic graphs of twice odd order

Suppose that Γ is a connected graph and G is a subgroup of the automorphism group Aut(Γ) of Γ. Then Γ is G-symmetric if G acts transitively on the arcs (and so the vertices) of Γ and Γ is G-semisymmetric if G acts edge transitively but not vertex transitively on Γ. If Γ is Aut(Γ)symmetric, respectively, Aut(Γ)-semisymmetric, then we say that Γ is symmetric, respectively, semisymmetric. If Γ is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2007

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2006.06.007